
21 570684 Ch16.qxd 3/31/04 3:00 PM Page 206

206 Part III: Giving Your Programs the Ability to Run Amok

To count backward, you subtract 1 from a variable’s value, which is exactly
the way you do it in your head: 10, 9, 8, 7, and so on. It looks identical to the
incrementing statement, except for the minus sign:

b=b-1;

The value of variable b is 1 less than it was before. If b came in with a value of
5, this statement sets b’s value to 4. This process is known as decrementing a
variable’s value.

� Decrementing, or subtracting 1 (or any number) from a variable’s value
is just common subtraction. The only big deal here is that decrementing
is done in a loop, which makes the loop count backward.

� Incrementing means adding (1) to a variable’s value.

� Decrementing means subtracting (1) from a variable’s value.

� Decrementing works because C first figures out what’s on the right side
of the equal sign:

b=b-1;

First comes b-1, so the computer subtracts 1 from the value of variable b.
Then, that value is slid through the equal signs, back into the variable b.
The variable is decremented.

How counting backward
fits into the for loop
Take another look at Line 7 from the OLLYOLLY.C program:

for(count=10;count>0;count=count-1)

It’s basic for loop stuff. The loop has a starting place, a while-true condition,
and a do-this thing. The parts are listed in Table 16-1.

Table 16-1 How the for Loop Counts Backward
Loop Part Condition

Starting count=10

While-true count>0

Do-this count=count-1

